I was using this for video understanding with inference form vlm.run infra. It definitely has outperformed Gemini which generally is much better than openai or Claude on videos. The detailed extraction is pretty good. With agents you can also crop into a segment and do more operations on it. have to see how the multi modal space progresses:
I found it pretty funny how bad Claude was at cropping an image. It was a cute little character with some text off to the side on a white background, all very clean cartoon vibes and it COULD NOT just select the character. I pursued it for 20 minutes because I thought it was funny. Of course it was 45 seconds to do it myself.
A lot of my side projects involve UIs and almost all of my problems with getting LLMs to write them for me involve "The UI isn't doing what you say it's doing" and struggling to get A) a reliable way to get it to look at the UI so it can continue its loop and B) getting it to understand what it's looking at well enough to do something about it
How do you think this tech was developed in the first place? It's probably trained and used in the surveillance bid for a decade before it comes to consumers, and this probably isn't the SoA stuff that governments have access to, we're probably 5-10 years behind what's on the cutting edge.
anyone have a tl;dr for me on what the best way to get the video comprehension stuff going is? i use qwen-30b-vl all the time locally as my goto model because it's just so insanely fast, curious to mess with the video stuff, the vision comprehension works great and i use it for OCR and classification all the time
Finetuning an LLM "backbone" (if I understand correctly: a fully trained but not instruction tuned LLM, usually small because students) with OCR tokens bests just about every OCR network out there.
And it's not just OCR. Describing images. Bounding boxes. Audio, both ASR and TTS, all works better that way. Now many research papers are only really about how to encode image/audio/video to feed it into a Llama or Qwen model.
It is fascinating. Vision language models are unreasonably good compared to dedicated OCR and even the language tasks to some extent.
My take is it fits into the general concept that generalist models have significant advantages because so much more latent structure maps across domains than we expect. People still talk about fine tuning dedicated models being effective but my personal experience is it's still always better to use a larger generalist model than a smaller fine tuned one.
link to results: https://chat.vlm.run/c/82a33ebb-65f9-40f3-9691-bc674ef28b52
Quick demo: https://www.youtube.com/watch?v=78ErDBuqBEo
A lot of my side projects involve UIs and almost all of my problems with getting LLMs to write them for me involve "The UI isn't doing what you say it's doing" and struggling to get A) a reliable way to get it to look at the UI so it can continue its loop and B) getting it to understand what it's looking at well enough to do something about it
https://deflock.me
Not to mention cloud platforms that collect evidence and process it with all the models and store that information for searching…
https://www.revir.ai
Doesn't that pretty much cover Palantir as well?
Finetuning an LLM "backbone" (if I understand correctly: a fully trained but not instruction tuned LLM, usually small because students) with OCR tokens bests just about every OCR network out there.
And it's not just OCR. Describing images. Bounding boxes. Audio, both ASR and TTS, all works better that way. Now many research papers are only really about how to encode image/audio/video to feed it into a Llama or Qwen model.
My take is it fits into the general concept that generalist models have significant advantages because so much more latent structure maps across domains than we expect. People still talk about fine tuning dedicated models being effective but my personal experience is it's still always better to use a larger generalist model than a smaller fine tuned one.
>it's still always better to use a larger generalist model than a smaller fine tuned one
Smaller fine-tuned models are still a good fit if they need to run on-premises cheaply and are already good enough. Isn't it their main use case?